Answer:
Here we have the matrix:
![M = \left[\begin{array}{ccc}1&0\\0&3\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/college/emmjtq6rgaa1o5lftm35q5btxzq0a1emb0.png)
And we want to find its inverse.
The inverse of a 2x2 matrix A is:
(1/det(A))*adj(A)
where det(A) is the determinant of the matrix.
Such that for a matrix:
![A = \left[\begin{array}{ccc}a_(11)&a_(12)\\a_(21)&a_(22)\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/college/m7watgg8usqig5t92i3wm3ofnirw9ch22m.png)
The determinant is:
det(A) = a₁₁*a₂₂ - a₁₂*a₂₁
in the case of our matrix M, the determinant is:
det(M) = 1*3 - 0*0 = 3
and adj(A) is a transposition along the diagonal, and for the other elements, we just change its sign.
Then for our matrix A we would have:
![adj(A) = \left[\begin{array}{ccc}a_(22)&-a_(12)\\-a_(21)&a_(11)\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/college/2edqmzodzts817icc5fu3d5z0ezt9cbhdj.png)
Then for our matrix M, we have:
![adj(M) = \left[\begin{array}{ccc}3&-0\\-0&1\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/college/pw5cj0bh58coai5gr6k4x8xv4yiu4ce7i8.png)
Then the inverse of the matrix M is:
![M^(-1) = (1)/(det(M)) *adj(M) = (1)/(3)\left[\begin{array}{ccc}3&0\\0&1\end{array}\right] = \left[\begin{array}{ccc}1&0\\0&1/3\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/college/almjke9x008xenftrk0dq80yxcvy2q8liu.png)