Answer:
![\displaystyle \lim_(x \to 0) \frac{√(cos(2x)) - \sqrt[3]{cos(3x)}}{sin(x^2)} = (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/iutf8ov106vzsf9jr8t6it2osgty6gwm8a.png)
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]:

L'Hopital's Rule
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
We are given the limit:
![\displaystyle \lim_(x \to 0) \frac{√(cos(2x)) - \sqrt[3]{cos(3x)}}{sin(x^2)}](https://img.qammunity.org/2022/formulas/mathematics/college/eik0ujp4ui6hghgg58toy9u7ww2hwgvr5l.png)
When we directly plug in x = 0, we see that we would have an indeterminate form:
![\displaystyle \lim_(x \to 0) \frac{√(cos(2x)) - \sqrt[3]{cos(3x)}}{sin(x^2)} = (0)/(0)](https://img.qammunity.org/2022/formulas/mathematics/college/wox49luaboyh5w02zy96eibj6o663048fz.png)
This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:
![\displaystyle \lim_(x \to 0) \frac{√(cos(2x)) - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle \lim_(x \to 0) \frac{(-sin(2x))/(√(cos(2x))) + \frac{sin(3x)}{[cos(3x)]^{(2)/(3)}}}{2xcos(x^2)}](https://img.qammunity.org/2022/formulas/mathematics/college/s21o9txzh64kywr8zwjwzevhj6pd966pvi.png)
Plugging in x = 0 again, we would get:
![\displaystyle \lim_(x \to 0) \frac{(-sin(2x))/(√(cos(2x))) + \frac{sin(3x)}{[cos(3x)]^{(2)/(3)}}}{2xcos(x^2)} = (0)/(0)](https://img.qammunity.org/2022/formulas/mathematics/college/zkhosspwbjkz6hfzk2k7omawsgwiezotb2.png)
Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:
![\displaystyle \lim_(x \to 0) \frac{(-sin(2x))/(√(cos(2x))) + \frac{sin(3x)}{[cos(3x)]^{(2)/(3)}}}{2xcos(x^2)} = \lim_(x \to 0) \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{(2)/(3)}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{(5)/(3)}}}{2cos(x^2) - 4x^2sin(x^2)}](https://img.qammunity.org/2022/formulas/mathematics/college/zaiivnbswsdhyvt5pduwbcvovpwk28264p.png)
Substitute in x = 0 once more:
![\displaystyle \lim_(x \to 0) \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{(2)/(3)}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{(5)/(3)}}}{2cos(x^2) - 4x^2sin(x^2)} = (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/jt2v70912k04qnz0g99w54eamxvxed3t6g.png)
And we have our final answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits