103k views
3 votes
Find y' for the following.​

Find y' for the following.​-example-1

1 Answer

2 votes

Answer:


\displaystyle y' = (5x - 2xy^2)/(2y(x^2 - 3y))

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Implicit Differentiation

Explanation:

Step 1: Define

Identify


\displaystyle 5x^2 - 2x^2y^2 + 4y^3 - 7 = 0

Step 2: Differentiate

  1. Implicit Differentiation:
    \displaystyle (dy)/(dx)[5x^2 - 2x^2y^2 + 4y^3 - 7] = (dy)/(dx)[0]
  2. Rewrite [Derivative Property - Addition/Subtraction]:
    \displaystyle (dy)/(dx)[5x^2] - (dy)/(dx)[2x^2y^2] + (dy)/(dx)[4y^3] - (dy)/(dx)[7] = (dy)/(dx)[0]
  3. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle 5(dy)/(dx)[x^2] - 2(dy)/(dx)[x^2y^2] + 4(dy)/(dx)[y^3] - (dy)/(dx)[7] = (dy)/(dx)[0]
  4. Basic Power Rule [Product Rule, Chain Rule]:
    \displaystyle 10x - 2 \Big( (d)/(dx)[x^2]y^2 + x^2(d)/(dx)[y^2] \Big) + 12y^2y' - 0 = 0
  5. Basic Power Rule [Chain Rule]:
    \displaystyle 10x - 2 \Big( 2xy^2 + x^22yy' \Big) + 12y^2y' - 0 = 0
  6. Simplify:
    \displaystyle 10x - 4xy^2 - 4x^2yy' + 12y^2y' = 0
  7. Isolate y' terms:
    \displaystyle -4x^2yy' + 12y^2y' = 4xy^2 - 10x
  8. Factor:
    \displaystyle y'(-4x^2y + 12y^2) = 4xy^2 - 10x
  9. Isolate y':
    \displaystyle y' = (4xy^2 - 10x)/(-4x^2y + 12y^2)
  10. Simplify:
    \displaystyle y' = (5x - 2xy^2)/(2y(x^2 - 3y))

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

User Dave De Jong
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.