136k views
2 votes

\int\limits^a_b {(1-x^(2) )^(3/2) } \, dx

2 Answers

4 votes

First integrate the indefinite integral,


\int(1-x^2)^(3/2)dx

Let
x=\sin(u) which will make
dx=\cos(u)du.

Then


(1-x^2)^(3/2)=(1-\sin^2(u))^(3/2)=\cos^3(u) which makes
u=\arcsin(x) and our integral is reshaped,


\int\cos^4(u)du

Use reduction formula,


\int\cos^m(u)du=(1)/(m)\sin(u)\cos^(m-1)(u)+(m-1)/(m)\int\cos^(m-2)(u)du

to get,


\int\cos^4(u)du=(1)/(4)\sin(u)\cos^3(u)+(3)/(4)\int\cos^2(u)du

Notice that,


\cos^2(u)=(1)/(2)(\cos(2u)+1)

Then integrate the obtained sum,


(1)/(4)\sin(u)\cos^3(u)+(3)/(8)\int\cos(2u)du+(3)/(8)\int1du

Now introduce
s=2u\implies ds=2du and substitute and integrate to get,


(3\sin(s))/(16)+(1)/(4)\sin(u)\cos^3(u)+(3)/(8)\int1du


(3\sin(s))/(16)+(3u)/(4)+(1)/(4)\sin(u)\cos^3(u)+C

Substitute 2u back for s,


(3u)/(8)+(1)/(4)\sin(u)\cos^3(u)+(3)/(8)\sin(u)\cos(u)+C

Substitute
\sin^(-1) for u and simplify with
\cos(\arcsin(x))=√(1-x^2) to get the result,


\boxed{(1)/(8)(x√(1-x^2)(5-2x^2)+3\arcsin(x))+C}

Let
F(x)=(1)/(8)(x√(1-x^2)(5-2x^2)+3\arcsin(x))+C

Apply definite integral evaluation from b to a,
F(x)\Big|_b^a,


F(x)\Big|_b^a=F(a)-F(b)=\boxed{(1)/(8)(a√(1-a^2)(5-2a^2)+3\arcsin(a))-(1)/(8)(b√(1-b^2)(5-2b^2)+3\arcsin(b))}

Hope this helps :)

User Parze
by
4.5k points
4 votes

Answer:
\displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{(3)/(2)} + 3a√(1 - a^2)}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{(3)/(2)} + 3b√(1 - b^2)}{8}General Formulas and Concepts:

Pre-Calculus

  • Trigonometric Identities

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:
\displaystyle \int {cos^n(x)} \, dx = (n - 1)/(n)\int {cos^(n - 2)(x)} \, dx + (cos^(n - 1)(x)sin(x))/(n)

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution (trigonometric substitution).

  1. Set u:
    \displaystyle x = sin(u)
  2. [u] Differentiate [Trigonometric Differentiation]:
    \displaystyle dx = cos(u) \ du
  3. Rewrite u:
    \displaystyle u = arcsin(x)

Step 3: Integrate Pt. 2

  1. [Integral] Trigonometric Substitution:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{(3)/(2)} \, du
  2. [Integrand] Rewrite:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{(3)/(2)} \, du
  3. [Integrand] Simplify:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = (4 - 1)/(4)\int \limits^a_b {cos^(4 - 2)(x)} \, dx + (cos^(4 - 1)(u)sin(u))/(4) \bigg| \limits^a_b
  5. [Integral] Simplify:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = (cos^3(u)sin(u))/(4) \bigg| \limits^a_b + (3)/(4)\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = (cos^3(u)sin(u))/(4) \bigg|\limits^a_b + (3)/(4) \bigg[ (2 - 1)/(2)\int\limits^a_b {cos^(2 - 2)(u)} \, du + (cos^(2 - 1)(u)sin(u))/(2) \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = (cos^3(u)sin(u))/(4) \bigg| \limits^a_b + (3)/(4) \bigg[ (1)/(2)\int\limits^a_b {} \, du + (cos(u)sin(u))/(2) \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = (cos^3(u)sin(u))/(4) \bigg| \limits^a_b + (3)/(4) \bigg[ (1)/(2)(u) \bigg| \limits^a_b + (cos(u)sin(u))/(2) \bigg| \limits^a_b \bigg]
  9. Simplify:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = (cos^3(u)sin(u))/(4) \bigg| \limits^a_b + (3cos(u)sin(u))/(8) \bigg| \limits^a_b + (3)/(8)(u) \bigg| \limits^a_b
  10. Back-Substitute:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = (cos^3(arcsin(x))sin(arcsin(x)))/(4) \bigg| \limits^a_b + (3cos(arcsin(x))sin(arcsin(x)))/(8) \bigg| \limits^a_b + (3)/(8)(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = (3arcsin(x))/(8) \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{(3)/(2)}}{4} \bigg| \limits^a_b + (3x√(1 - x^2))/(8) \bigg| \limits^a_b
  12. Rewrite:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{(3)/(2)} + 3x√(1 - x^2)}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^a_b {(1 - x^2)^\Big{(3)/(2)}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{(3)/(2)} + 3a√(1 - a^2)}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{(3)/(2)} + 3b√(1 - b^2)}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Mludd
by
4.0k points