Given:
The function is:
![f(x)=x^2-x+1](https://img.qammunity.org/2022/formulas/mathematics/college/ky3bmvs25jfzgadl3q57zik3n2qm6bcqw6.png)
To find:
The result of the operation
.
Solution:
If
, then the graph of f(x) is reflected across the x-axis to get the graph of g(x).
We have,
![f(x)=x^2-x+1](https://img.qammunity.org/2022/formulas/mathematics/college/ky3bmvs25jfzgadl3q57zik3n2qm6bcqw6.png)
The given operation is:
![-f(x)=-(x^2-x+1)](https://img.qammunity.org/2022/formulas/mathematics/college/ns194dir72b68i8d51r701uk2itorzujzf.png)
So, it will result in a reflection across the x-axis.
Therefore, the correct option is A.