SOLUTION :
Given that :
![\frak {\cos( \theta_(1) ) = - (13)/(15) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/5h3tqag1ws2dx9b7gav0kp43sbomwch9hf.png)
To find :
![\frak{ sin( \theta_(1) )}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kaehor5681e3qbiggw6d5jb9a5jj7ja0cx.png)
We know that cos θ is base/hypotentuse
So, here the base is -13 and the hypotentuse is 15
As we got the base and hypotentuse, perpendicular needs to be found out
Now, applying Pythagoras Theorem
According to Pythagoras theorem we know that :
- (Hypotentuse)² = (Base)² + (Perpendicular)²
Let us assume perpendicular be x
Putting the values we get
By transposing we get
sin θ formula : Perpendicular/Hypotentuse
![\star \: \: \underline{ \overline{ \boxed{ \frak{ sin (\theta_(1))} = (-2 √(14) )/(15) }}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/eqqz2d44aisbg6ikwj7dki0dzhd717o5wk.png)
Hence, the answer is -2√14/15