Answer:
y=4x-3
Explanation:
Hi there!
We are given the points (1,1) and (-2, -11) and we want to write the equation of the line in slop-intercept form
Slope-intercept form is given as y=mx+b, where m is the slope and b is the y intercept
So let's find the slope of the line
The formula for the slope calculated from two points is
, where
and
are points
We have everything we need to calculate the slope, let's just label the points to avoid confusion

Now substitute those values into the formula
m=

m=

Subtract
m=

Divide
m=4
So the slope of the line is 4
Here is the equation of the line so far:
y=4x+b
We need to find b
As the equation passes through both (1,1) and (-2, -11), we can plug either one of them into the equation to solve for b
Taking (1,1) will give us this:
1=4(1)+b
Multiply
1=4+b
Subtract 4 from both sides
-3=b
Substitute -3 as b into the equation
y=4x-3
Hope this helps!