Given:
The function is:
![f(x)=(1)/(x+3)-2](https://img.qammunity.org/2022/formulas/mathematics/college/kvhrptx33x4fi01pbm5el4796g6gdqty0i.png)
To find:
The graph of the given function.
Solution:
We have,
![f(x)=(1)/(x+3)-2](https://img.qammunity.org/2022/formulas/mathematics/college/kvhrptx33x4fi01pbm5el4796g6gdqty0i.png)
It can be written as:
![f(x)=(1-2(x+3))/(x+3)](https://img.qammunity.org/2022/formulas/mathematics/college/vdxnu2cwdxb36ex14bj9qcab38fekiu7if.png)
![f(x)=(1-2x-6)/(x+3)](https://img.qammunity.org/2022/formulas/mathematics/college/acxbzxuyx7n672pvf3hwst3yhmftc8bf90.png)
![f(x)=(-2x-5)/(x+3)](https://img.qammunity.org/2022/formulas/mathematics/college/6og2nyp9ne0f48pohohq4ci5p6yjqas9fv.png)
Putting
to find the y-intercept.
![f(0)=(-2(0)-5)/((0)+3)](https://img.qammunity.org/2022/formulas/mathematics/college/34xu1bl4v4rjlb2z09ajwfk04qlpqssvhp.png)
![f(0)=(-5)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/kcyp0cndjwsg2r6boe6y4bykup74aspcwq.png)
So, the y-intercept is
.
Putting
to find the x-intercept.
![0=(-2x-5)/(x+3)](https://img.qammunity.org/2022/formulas/mathematics/college/6wm2r6itiqfjgam0vhq2yi0mf1ykmpe4j2.png)
![0=-2x-5](https://img.qammunity.org/2022/formulas/mathematics/college/7cnyeytmn0ef89bx09wgb4odf6a975huqy.png)
![2x=-5](https://img.qammunity.org/2022/formulas/mathematics/college/fc9dipm9g4ga9hgukwle9g89myoqr7ql6b.png)
![x=(-5)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/ia0hgt30d15qtcl2cubd6pfqeg7y8ymqvq.png)
![x=-2.5](https://img.qammunity.org/2022/formulas/mathematics/college/d57wu5hale06ft1kotwwqqixl5hoe03clb.png)
So, the x-intercept is
.
For vertical asymptote, equate the denominator and 0.
![x+3=0](https://img.qammunity.org/2022/formulas/mathematics/college/wnywfv659707tdc5pywutd7qb36gkrjvmb.png)
![x=-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/abwmlv6rktwt1ehtoiqmonsf50v7o8aljx.png)
So, the vertical asymptote is
.
The degrees of numerator and denominator are equal, so the horizontal asymptote is the ratio of leading coefficients.
![y=(-2)/(1)](https://img.qammunity.org/2022/formulas/mathematics/college/tj2gnxe7mzd9hcbupkviv48kqwu8yiwqp3.png)
![y=-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/loh7bmn1vy70trt1al1uhi1eiwwocalokj.png)
So, the horizontal asymptote is
.
End behavior of the given function:
as
![x\to -\infty](https://img.qammunity.org/2022/formulas/mathematics/college/ngww6c0saxhgwka3hnc0c06s7lxwp7f9r1.png)
as
![x\to -3^-](https://img.qammunity.org/2022/formulas/mathematics/college/f16is6223vac1iaf15o8kr5q1s4r1pxv5i.png)
as
![x\to -3^+](https://img.qammunity.org/2022/formulas/mathematics/college/2pqwv56o0br4ueqp237ujsf1g7vc4sycf1.png)
as
![x\to \infty](https://img.qammunity.org/2022/formulas/mathematics/college/hb8kx5sy5i3raoygoo9rsjcj5mss92soks.png)
Using all these key features, draw the graph of given function as shown below.