The circulation of V around the given path (call it C) is simply the line integral of V along C. Since C is a closed curve, we can use Green's theorem.
![\displaystyle \int_C \vec V(x,y) \cdot d\vec r = \iint_{\mathrm{int}(C)} (\partial)/(\partial x)\left[(x+1)/((x+1)^2+4y^2)\right] - (\partial)/(\partial y)\left[-(y)/((x+1)^2+4y^2)\right] \, dx\,dy](https://img.qammunity.org/2023/formulas/mathematics/college/9yonfwe950xwwsbr89sxzejy21wcvdq0vp.png)
where int(C) is the interior or region bounded by C.
We have
![(\partial)/(\partial x)\left[(x+1)/((x+1)^2+4y^2)\right] = (4y^2 - (x+1)^2)/(((x+1)^2+4y^2)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/fmcku934oa4uzsi82nl1s5mubcyp9yhh81.png)
![(\partial)/(\partial y)\left[-(y)/((x+1)^2+4y^2)\right] = (4y^2-(x+1)^2)/(((x+1)^2+4y^2)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/gdhmdwd12dafj3haf4jyf4r4a50ey6y3yh.png)
so the double integral and hence the circulation is zero.