Answer:
0.7734 = 77.34% probability that at least 22 will contain an error. Probability above 50%, which means that this is likely to occur.
Explanation:
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
The standard deviation of the binomial distribution is:
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that
,
.
About 12.5% of restaurant bills are incorrect.
This means that

200 bills are selected at random
This means that

Mean and standard deviation:


Find the probability that at least 22 will contain an error.
Using continuity correction, this is
, which is 1 subtracted by the p-value of Z when X = 21.5. So



has a p-value of 0.2266.
1 - 0.2266 = 0.7734
0.7734 = 77.34% probability that at least 22 will contain an error. Probability above 50%, which means that this is likely to occur.