The question is incomplete. The complete question is :
A spherical piece of candy is suspended in flowing water. The candy has a density of 1950 kg/m3 and has a 1.0 cm diameter. The water velocity is 1.0 m/s, the water density is assumed to be 1000.0 kg/m3, and the water viscosity is 1.0x10-3 kg/m/s. The diffusion coefficient of the candy solute in water is 2.0x10-9 m2/s, and the solubility of the candy solute in water is 2.0 kg/m3. Calculate the mass transfer coefficient (m/s) and the dissolution rate (kg/s).
Solution :
From flow over sphere, the mass transfer equation can be written as :
![$Sh = 2 + 0.6 Re^(1/2) Sc^(1/3)$](https://img.qammunity.org/2022/formulas/physics/college/xw2gwduo730lad7n60si3n2dwxkk7tlrtf.png)
where, Sherood number,
![$Sh = (K_L d)/(D_(eff))$](https://img.qammunity.org/2022/formulas/physics/college/dl13v1l5ov5evzf0mxxv9tr5px634cv8ee.png)
Reynolds number,
![$Re=(Vd\rho)/(\mu)$](https://img.qammunity.org/2022/formulas/physics/college/5i9xdf0n23ixgcdwjntqyl2noq1d98swh2.png)
Schmid number,
![$Sc= (\mu)/(\rho D_(eff))$](https://img.qammunity.org/2022/formulas/physics/college/hiv5ot6fua6r2vahzkfhbqwlep9eel7rzz.png)
So,
![$(K_L d)/(D_(eff))=2+0.6 \left( (V d \rho)/(\mu) \right)^(1/2) \ \left( (\mu)/(\rho D_(eff)) \right)^(1/3)$](https://img.qammunity.org/2022/formulas/physics/college/5x041mujqrqrkkruvit5ctqxds5aaixr11.png)
Diameter, d = 1 cm =
m
V = 1 m/s
![$\rho = 1000 \ kg/m^3$](https://img.qammunity.org/2022/formulas/physics/college/kxlq8i1uyciqt0n2b1l8a0v31h6fxe7bps.png)
![$\mu = 10^(-3) \ kg/m/s$](https://img.qammunity.org/2022/formulas/physics/college/zsgv7skbo66xiw8klk4g3sk0xr3nk9e5gz.png)
![$D_(eff) = 2 * 10^(-9) \ m^2/s$](https://img.qammunity.org/2022/formulas/physics/college/bxl6p6wn5mnp2kka7zpsh70at56ahflzy1.png)
![$(K_L * 10^(-2))/(2 * 10^(-9))=2+0.6 \left( (1 * 10^(-2) * 10^3)/(10^(-3)) \right)^(1/2) \ \left( (10^(-3))/(10^3 * 2 * 10^(-9)) \right)^(1/3)$](https://img.qammunity.org/2022/formulas/physics/college/qsjvciwm9vngi6515wnyh4immmake3ri6y.png)
![$K_L * 5 * 10^6=478.22$](https://img.qammunity.org/2022/formulas/physics/college/4c15eo4n0wwhmknbu3rf4db7jm77cpj0j7.png)
m/s
So the mass transfer coefficient is 9.5644
m/s. It is given solubility,
![$\Delta C = 2 \ kg/m^3$](https://img.qammunity.org/2022/formulas/physics/college/lunufs5soy8dytozp086ivsi2bd275kdtq.png)
![$N = Md^2 * \Delta C * K_L$](https://img.qammunity.org/2022/formulas/physics/college/211mfuu8tnn9s349q2yeiiadif4hekuyl0.png)
![$N= M * (10^(-2))^2 * 2 * 9.5644 * 10^(-5)$](https://img.qammunity.org/2022/formulas/physics/college/xf474iv2od9nzo80vb20xmzloxydy8axkf.png)
kg/s (dissolution rate)