113k views
4 votes
Cho 6 số thỏa mãn: xa+yb=c ,xb+yc=a, xc+ya=b; abc khác 0

Tính P=
$(a^(2))/(bc)$ + $(b^(2))/(ca)$ + $(c^(2))/(ab)$

1 Answer

0 votes

Answer:

Explanation:

xa+yb=c

xb+yc=a

xc+ya=b

add

x(a+b+c)+y(a+b+c)=a+b+c

x+y=1 ... (1)

xac+ybc=c²

xab+yac=a²

xbc+yab=b²

add

x(ab+bc+ca)+y(ab+bc+ca)=a²+b²+c²


x+y=(a^2+b^2+c^2)/(ab+bc+ca) \\(a^2+b^2+c^2)/(ab+bc+ca) =1\\a^2+b^2+c^2=ab+bc+ca\\a^2+b^2+c^2-ab-bc-ca=0\\a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=(a+b+c)(0)=0\\a^3+b^3+c^3=3abc\\(a^3)/(abc) +(b^3)/(abc) +(c^3)/(abc) =3\\(a^2)/(bc) +(b^2)/(ca) +(c^2)/(ab) =3

User NANNAV
by
4.8k points