Given :
- The length of a rectangle is 2 cm less than its width.
- Area of the rectangle is 168 cm²
To Find :
- The dimensions of the rectangle.
Solution :
- Let us assume the length of the rectangle as x cm and therefore the breadth will be (x + 2) cm
We know that,
![\purple{ \boxed{\quad \bf Length * Width = Area_((rectangle))}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hmkz2qdesxktap4p57o30dlpw9agxh5b02.png)
Now, Putting the values in the formula :
![{ \qquad \sf { \dashrightarrow{ x(x + 2)= 168 {cm}^(2) }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nkjb388wielf2mvbx1y4lgabgam7r39hqp.png)
![{ \qquad \sf { \dashrightarrow{ {x}^(2) + 2x= 168 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jlmhre55tffeks7q7gkk44m2zdmsppku6j.png)
![{ \qquad \sf { \dashrightarrow{ {x}^(2) + 2x - 168=0 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/se9r9er7mlvfjguc2uaqolbblf068hjicy.png)
![{ \qquad \sf { \dashrightarrow{ {x}^(2) - 12x + 14x - 168 = 0 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9ja5w4l1tqfey5gvpl8em327uwv310vtcf.png)
![{ \qquad \sf { \dashrightarrow{ {x}(x - 12) + 14(x - 12) = 0 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jq7hnrrudsjf7zw7jcentiqmz5wy2hq7v7.png)
![{ \qquad \sf { \dashrightarrow{ ({x}+ 14)(x - 12) = 0 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5im7ek7wrfkbe5pwry69jq65o6f8jryvy0.png)
![{ \qquad \sf { \dashrightarrow{ ({x}+ 14) = 0 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oxqbuyukyqe6e1dpt0669mtqi1p02scpmv.png)
![{ \qquad \sf { \dashrightarrow{ {x}= - 14 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/35ib4qkw4937ikyyuk06x3uo1x7glpk86p.png)
![{ \qquad \sf { \dashrightarrow{ ({x} - 12) = 0 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l8w7l8ccscz69t78ganttq345ukz4bwfo1.png)
![{ \qquad \sf { \dashrightarrow{ {x} = 12 }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nk0uyqf39upn310lr6thab0gp8axn9i1zy.png)
The length of the rectangle can never be negative so the length must be 12 cm .
Therefore, Width = (12 + 2) = 14 cm .