i.
![T = 36.8\:\text{N}](https://img.qammunity.org/2022/formulas/physics/college/uem5fxt4q8vui6437czpedegazp2gyzu03.png)
ii.
![a = 2.45\:\text{m/s}^2](https://img.qammunity.org/2022/formulas/physics/college/odsioda1858c0jzhoheflhv06cf4s2h2d6.png)
iii.
![x = 1.23\:\text{m}](https://img.qammunity.org/2022/formulas/physics/college/m7z6egy5poz1x31688vlygw2ap3w4bnruw.png)
Step-by-step explanation:
Let's write Newton's 2nd law for each object. We will use the sign convention assigned for each as indicated in the figure. Let T be the tension on the string and assume that the string is inextensible so that the two tensions on the strings are equal. Also, let a be the acceleration of the two masses. And
and
![m_2 = 5\:\text{kg}](https://img.qammunity.org/2022/formulas/physics/college/as0j8ybsuyjgtnyu7gar463xrmaqz7b9e5.png)
Forces acting on m1:
![T - m_1g = m_1a\:\:\:\:\:\:\:(1)](https://img.qammunity.org/2022/formulas/physics/college/ljzebwodz4af24itewcfo8ze64o8j7quwh.png)
Forces acting on m2:
![m_2g - T = m_2a\:\:\:\:\:\:\:(2)](https://img.qammunity.org/2022/formulas/physics/college/24rnfekkx5rkm7rn7zhbzzg00akirt30jq.png)
Combining Eqn(1) and Eqn(2) together, the tensions will cancel out, giving us
![m_2g - m_1g = m_2a + m_1a](https://img.qammunity.org/2022/formulas/physics/college/7ejzn62juhfennhju9g3q1jxowah8njh88.png)
or
![(m_2 - m_1)g = (m2 + m_1)a](https://img.qammunity.org/2022/formulas/physics/college/d4bnhaja62ig761ouj7nwhj6hwlkbv0x3y.png)
Solving for a,
![a = \left((m_2 - m_1)/(m_2 + m_1)\right)g](https://img.qammunity.org/2022/formulas/physics/college/ddozjrb8yq0a85jenyb8cdtsqw7rt8ovb6.png)
![\:\:\:\:= \left(\frac{5\:\text{kg} - 3\:\text{kg}}{5\:\text{kg} + 3\:\text{kg}}\right)(9.8\:\text{m/s}^2)](https://img.qammunity.org/2022/formulas/physics/college/m2xwvpv5vtmumsqbe9mz2jckhj0eycbczt.png)
![\:\:\:\:= 2.45\:\text{m/s}^2](https://img.qammunity.org/2022/formulas/physics/college/ax1zba71eu6zrk8lhmc7cfquzpkx0sujof.png)
We can solve for the tension by using this value of acceleration on either Eqn(1) or Eqn(2). Let's use Eqn(1).
![T - (3\:\text{kg})(9.8\:\text{m/s}^2) = (3\:\text{kg})(2.45\:\text{m/s}^2)](https://img.qammunity.org/2022/formulas/physics/college/85jwehkyvfp3h9f85atgfra1zesu1ck7fu.png)
![T = (3\:\text{kg})(9.8\:\text{m/s}^2) + (3\:\text{kg})(2.45\:\text{m/s}^2)](https://img.qammunity.org/2022/formulas/physics/college/zmw08ohoaqizew883m9sf1in7gs9w9thd8.png)
![\:\:\:\:= 29.4\:\text{m/s}^2 + 7.35\:\text{m/s}^2 = 36.8\:\text{N}](https://img.qammunity.org/2022/formulas/physics/college/2sacegvw7iu7ououtsl6aofz443xw3icev.png)
Assuming that the two objects start from rest, the distance that they travel after one second is given by
![x = (1)/(2)at^2 = (1)/(2)(2.45\:\text{m/s}^2)(1\:\text{s})^2 = 1.23\:\text{m}](https://img.qammunity.org/2022/formulas/physics/college/q2xkmjwflq1sa5y2zn0n0ceqvuj8ithpim.png)