(1) This series consists of terms of an arithmetic sequence:
179 - 173 = 6
173 - 167 = 6
and so on, so that the n-th term in the series is (for n ≥ 1)
a(n) = 179 - 6 (n - 1) = 185 - 6n
Then the sum of the first 53 terms is
![\displaystyle\sum_(n=1)^(53)(185-6n) = 185\sum_(n=1)^(53)1-6\sum_(n=1)^(53)n](https://img.qammunity.org/2022/formulas/mathematics/high-school/xndbccb51ac0z0m7r6i49dwhalj5oip9zn.png)
![\displaystyle\sum_(n=1)^(53)(185-6n) = 185*53-6*\frac{53*54}2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ni1ztq2aos9zmssmetd8xpnbdbdf6v5yux.png)
![\displaystyle\sum_(n=1)^(53)(185-6n) = \boxed{1219}](https://img.qammunity.org/2022/formulas/mathematics/high-school/l7mxdk5y4lfhs20lu3g9duxopap1pkr382.png)
(2) This series has terms from a geometric sequence:
-12 / 6 = -2
24/(-12) = -2
-48/24 = -2
and so on. The n-th term is (again, for n ≥ 1)
a(n) = 6 (-2)ⁿ⁻¹
and the sum of the first 19 terms is
![\displaystyle\sum_(n=1)^(19)6(-2)^(n-1) = 6\left(1 + (-2) + (-2)^2 + (-2)^3 + \cdots+(-2)^(19)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1z2szj7a2p1m5c27hn5tg689v6ahbrzfa8.png)
Multiply both sides by -2 :
![\displaystyle-2\sum_(n=1)^(19)6(-2)^(n-1) = 6\left((-2) + (-2)^2 + (-2)^3 + (-2)^4 + \cdots+(-2)^(20)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u536hktlrn8b0jvm0hujulbhkqf9xze70b.png)
Subtracting this from the first sum gives
![\displaystyle(1-(-2))\sum_(n=1)^(19)6(-2)^(n-1) = 6\left(1 -(-2)^(20)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tah9evpes9twc1vkml538tgc75230ifl0e.png)
and solving for the sum, you get
![\displaystyle3\sum_(n=1)^(19)6(-2)^(n-1) = 6\left(1 -(-2)^(20)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/50txj676xsesq0svxixm6cpgcvi29oysuz.png)
![\displaystyle\sum_(n=1)^(19)6(-2)^(n-1) = 2\left(1 -(-2)^(20)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/frb8sisje3abzxl68yyt8locoo9u4mdwt3.png)
![\displaystyle\sum_(n=1)^(19)6(-2)^(n-1) = 2\left(1 -(-1)^(20)2^(20)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6x68i7h5q2d4zd6kevyey65jruez3w25kl.png)
![\displaystyle\sum_(n=1)^(19)6(-2)^(n-1) = 2\left(1 -2^(20)\right) = 2-2^(21) = \boxed{-2,097,150}](https://img.qammunity.org/2022/formulas/mathematics/high-school/sf7ipcy7tobx5u0kc2yqztqz7vm1dv1mfv.png)