78.9k views
4 votes
Lmc of x^2-4 and x^2-5x-14

User Vtukhtarov
by
3.8k points

1 Answer

6 votes

Answer:


\left(x+2\right)\cdot \left(x-2\right)\cdot \left(x-7\right)

Explanation:


\mathrm{Find\:Least\:Common\:Multiplier\:of\:}x^2-4,\:x^2-5x-14


\mathrm{The\:LCM\:of\:}a,\:b\:\mathrm{is\:the\:smallest\:multiplier\:that\:is\:divisible\:by\:both\:}a\mathrm{\:and\:}b


x^2-4


\mathrm{Rewrite\:}4\mathrm{\:as\:}2^2


=x^2-2^2


x^2-2^2=\left(x+2\right)\left(x-2\right)


=\left(x+2\right)\left(x-2\right)


x^2-5x-14


=\left(x^2+2x\right)+\left(-7x-14\right)


=x\left(x+2\right)-7\left(x+2\right)


=\left(x+2\right)\left(x-7\right)


\mathrm{Multiply\:each\:factor\:with\:the\:highest\:power:}


\left(x+2\right)\cdot \left(x-2\right)\cdot \left(x-7\right)

User BatyaGG
by
4.2k points