20.0k views
5 votes
QUICK PLZ!!!!! Which graph shows the result of dilating this figure by a factor of One-third about the origin? On a coordinate plane, triangle A B C has points (negative 6, 6), (6, 6), (6, negative 6). On a coordinate plane, triangle A prime B prime C prime has points (negative 2, 2), (2, 2), (2, negative 2). On a coordinate plane, triangle A prime B prime C prime has points (negative 3, 3), (3, 3), (3, negative 3). On a coordinate plane, triangle A prime B prime C prime has points (Negative 18, 18), (18, 18), (18, negative 18). On a coordinate plane, triangle A prime B prime C prime has points (negative 12, 12), (12, 12), (12, negative 12).

User Pwdyson
by
8.4k points

1 Answer

7 votes

Answer:


A' = (-2,2)


B' = (2,2)


C' = (2,-2)

Explanation:

Given


A = (-6,6)


B = (6,6)


C = (6,-6)


k = (1)/(3)

Required

The new coordinates

To do this, we simply multiply the coordinates of
\triangle ABC by the factor of dilation.

i.e.:


A' = A * k


B' = B * k


C' = C * k

So, we have:


A' = (-6,6) * (1)/(3)


A' = (-2,2)


B' = (6,6) * (1)/(3)


B' = (2,2)


C' = (6,-6) * (1)/(3)


C' = (2,-2)

User Eritbh
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories