235k views
2 votes
Can someone please help me with my maths question​

Can someone please help me with my maths question​-example-1

1 Answer

3 votes

Answer:


a. \ (625 \cdot m)/(27 \cdot n^(11))


b. \ (x^(3 \cdot m - 2))/(y^( 3 + n))

Explanation:

The question relates with rules of indices

(a) The give expression is presented as follows;


(m^3 * \left (n^(-2) \right )^4 * (5 \cdot m)^4)/(\left (3 \cdot m^2 \cdot n \right )^3)

By expanding the expression, we get;


(m^3 * n^(-8) * 5^4 * m^4)/(\left 3^3 * m^6 * n^3)

Collecting like terms gives;


(m^((3 + 4 - 6)) * 5^4)/( 3^3 * n^(3 + 8)) = (625 \cdot m)/(27 \cdot n^(11))


(m^3 * \left (n^(-2) \right )^4 * (5 \cdot m)^4)/(\left (3 \cdot m^2 \cdot n \right )^3)= (625 \cdot m)/(27 \cdot n^(11))

(b) The given expression is presented as follows;


x^(3 \cdot m + 2) * \left (y^(n - 1) \right )^3 / (x \cdot y^n)^4

Therefore, we get;


x^(3 \cdot m + 2) * \left (y^(n - 1) \right )^3 * x^(-4) * y^(-4 \cdot n)

Collecting like terms gives;


x^(3 \cdot m + 2 - 4) * \left (y^(3 \cdot n - 3 -4 \cdot n)} \right ) = x^(3 \cdot m - 2) * \left (y^( - 3 -n)} \right ) = x^(3 \cdot m - 2) / \left (y^( 3 + n)} \right )


x^(3 \cdot m - 2) / \left (y^( 3 + n)} \right ) = (x^(3 \cdot m - 2))/(y^( 3 + n))


x^(3 \cdot m + 2) * \left (y^(n - 1) \right )^3 * x^(-4) * y^(-4 \cdot n) =(x^(3 \cdot m - 2))/(y^( 3 + n))

User TMichel
by
3.7k points