Answer:
![(a)\ Ratio = 13.5 : 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/tn2zq3i0emud5lmd2li8w6b63qk7z712qx.png)
(b) The height of the smaller bucket is 10.7
Explanation:
Given
![V_L = 13(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/txuwgy8hv1s3wmh9l4ollkrhd6wguh325q.png)
![V_S = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/tc6dec687tp7ppycb10ttggi5t033dnfw1.png)
![H_L = 36cm](https://img.qammunity.org/2022/formulas/mathematics/high-school/brszcjz0xmnzgu8gouksfe4yfwu3za1yb6.png)
Solving (a): The ratios
This is represented as:
![Ratio = V_L : V_S](https://img.qammunity.org/2022/formulas/mathematics/high-school/ref8ysiz7uwndknetv4jhjkei2jlts3k3v.png)
So, we have:
![Ratio = 13(1)/(2) : 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/oz6vel6urwkgp7veqd69xe6xivnn3vxyqd.png)
Express as decimal
![Ratio = 13.5 : 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/pwqbcaiw9ruqeatw7rw5q8zsl8et3ghh6c.png)
Solving (b): The height of the smaller bucket
The ratio of the heights is:
![Ratio = H_L : H_S](https://img.qammunity.org/2022/formulas/mathematics/high-school/m0i8b7iloilq9sssx801s3dkq2lh02zoc1.png)
So, we have:
![13.5 : 4 = H_L : H_S](https://img.qammunity.org/2022/formulas/mathematics/high-school/ag99bnfv277eh4knneonhe066cng5f8ien.png)
Substitute known value
![13.5 : 4 = 36 : H_S](https://img.qammunity.org/2022/formulas/mathematics/high-school/4w65u3td6oyeeur17m2xtipnlrj2k5d5pz.png)
Express as fraction
![4/13.5 = H_S/36](https://img.qammunity.org/2022/formulas/mathematics/high-school/bob9gb182h4lefm5xushtbbmh3yls2ijrj.png)
Multiply by 36
![36 * 4/13.5 = H_S](https://img.qammunity.org/2022/formulas/mathematics/high-school/pdx0w9u5f3du0jqd70fgfbd1v16avp6fld.png)
![10.7 = H_S](https://img.qammunity.org/2022/formulas/mathematics/high-school/oqdnn30ufc3bq8hzyhuvuhywxizsvl13lj.png)
![H_S = 10.7](https://img.qammunity.org/2022/formulas/mathematics/high-school/7zx7gv7ow4vnum94tsrzy8i5v91rn6zpld.png)