32.5k views
2 votes
n the graph below determine how many real solutions the quadratic function has, and state them, if applicable. List solutions in order from left to right on the graph, or least to greatest. If the function has only one solution, type the solution in both of the boxes. If there are no real solutions type “none” in both boxes.

n the graph below determine how many real solutions the quadratic function has, and-example-1
User Rgksugan
by
5.7k points

1 Answer

0 votes

Answer:

There are no real solutions.

Explanation:

There are 3 options.

2 real solutions: This happens if in the graph, each arm intersects the x-axis, this means that there are two different values of x such that the equation:

a*x^2 + b*x + c

is equal to zero.

Another way to see this, is if the determinant:

b^2 - 4*a*c

is larger than zero.

1 real solution: This happens when the vertex of the graph intersects the x-axis. This means that there is a single value of x such that:

a*x^2 + b*x + c

is equal to zero.

Another way to see this is if the determinant:

b^2 - 4*a*c

is larger equal zero.

No real solution: if in the graph we can not see any intersection of the x-axis, then we do not have real solutions (only complex ones).

Another way to see this is if the determinant:

b^2 - 4*a*c

is smaller than zero.

Now that we know this, let's look at the graph.

We can see that the vertex is below the x-axis, and the arms of the graph go downwards. So the arms will never intersect the x-axis (and neither the vertex).

So the graph does not intersect the x-axis at any point, which means that there are no real solutions for the quadratic equation.

The correct answer would be "none"

User Milinda
by
5.5k points