Given:
The given geometric sequence is:
0.0625, 0.25, 1, ..., 4194304
To find:
The number of terms in the given geometric sequence.
Solution:
We have,
0.0625, 0.25, 1, ..., 4194304
Here, the first term is 0.0625 and the common ratio is:
![r=(0.25)/(0.0625)](https://img.qammunity.org/2022/formulas/mathematics/high-school/f51os94ae4d3pwewdo0pmpev0tsoxoi7rk.png)
![r=4](https://img.qammunity.org/2022/formulas/mathematics/high-school/abyzirzz1up1k9xf54dfodv2zwuujxw3m8.png)
The nth term of a geometric sequence is:
![a_n=ar^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/d8gqsnegpwhf7ml9e5l92yyeq393i6f3pq.png)
Where, a is the first term and r is the common ratio.
Putting
in the above formula, we get
![4194304=0.0625(4)^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/i0aq0i6vy417mguttfes9yku2pnhtqdzpn.png)
![(4194304)/(0.0625)=(4)^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cwemrql8vq6pcwc1ytuiai6zf5oi7dweui.png)
![67108864=(4)^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/z8jf658a77w1c8wjjm0yxxie80hdlwtybh.png)
![4^(13)=(4)^(n-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tamqp0ypc79teqc0r92kfr6dthkt2tno0m.png)
On comparing both sides, we get
![13=n-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/qq9q5sfulx9cahfcvqudouklu5wu05wm4n.png)
![13+1=n](https://img.qammunity.org/2022/formulas/mathematics/high-school/pezhrxdwvhge98k5i6la45p6e3i99ixtct.png)
![14=n](https://img.qammunity.org/2022/formulas/mathematics/high-school/9h9gzwyb1vtulv9nvtqjo0wiy2hw6r4ju1.png)
Therefore, the number of terms in the given geometric sequence is 14.