Answer:
See explanation
Explanation:
The question is incomplete, as the function is not given. So, I will make an assumption.
A quadratic function is represented as:
![f(x) = ax^2 + bx + c](https://img.qammunity.org/2022/formulas/mathematics/high-school/vn5mjd8t8p220343pn6nqkyc67x661tzzi.png)
If
, then the function has a minimum x value
E.g.
------
![4 > 0](https://img.qammunity.org/2022/formulas/mathematics/college/yn3g6vffmv3ef8x13roumzoq7g8rwzb5o6.png)
Else, then the function has a maximum x value
E.g.
----
The maximum or minimum x value is calculated using:
![x = -(b)/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/y2b6geafz1pjruxwouwwx7w862vr6wz9s6.png)
For instance, the maximum of
is:
![x = -(-5)/(2*-4)](https://img.qammunity.org/2022/formulas/mathematics/college/p80cpy4kb3vyhlf1jnhpjdnwpls6gyjz1i.png)
![x = -(5)/(8)](https://img.qammunity.org/2022/formulas/mathematics/college/gq7q9ys6ejdgg0dxeifnl6i1fzsv65e2ae.png)
So, the maximum of the function is:
![f(x)= -4x^2 -5x + 8](https://img.qammunity.org/2022/formulas/mathematics/college/lrzp2rx1ya0v11kcd4szjdp6q4l5ojnyv0.png)
![f(-(5)/(8)) = -4 * (-(5)/(8))^2 - 5 *(-(5)/(8)) +8](https://img.qammunity.org/2022/formulas/mathematics/college/oma1hnzy42izkpo2myqxbkh4kc9qrfunh4.png)
![f(-(5)/(8)) = 9.5625](https://img.qammunity.org/2022/formulas/mathematics/college/vkltpjcfq4fr038q48yu22gvgp0sqjudmt.png)