461,331 views
21 votes
21 votes
Use the Law of Sines to solve (if possible) the triangle. If two solutions exist, find both. Round your answers to two decimal places. (If not possible, enter IMPOSSIBLE.) A = 72°, a = 34, b = 21

User Patrick Roocks
by
2.9k points

2 Answers

23 votes
23 votes

Answer:


B\approx35.97^\circ\\C\approx72.03^\circ\\c\approx34

Explanation:

Law of Sines


(sinA)/(a)=(sinB)/(b)=(sinC)/(c)

Given information


A=72^\circ\\a=34\\b=21

Check if solutions exist

As
A=72^\circ < 90^\circ and that
a > b\rightarrow 34 > 21, then there exists only one possible triangle by the Ambiguous Case

Solve the triangle


(sin(72^\circ))/(34)=(sin(B))/(21)\\ \\ 21sin(72^\circ)=34sin(B)\\\\(21sin(72^\circ))/(34)=sin(B)\\ \\B=sin^(-1)((21sin(72^\circ))/(34))\\ \\B=35.97394255^\circ\approx35.97^\circ


A+B+C=180^\circ\\\\72^\circ+35.97394255^\circ+C=180^\circ\\\\107.97394255^\circ+C=180^\circ\\\\C=72.02605745^\circ\approx72.03^\circ


(sin(72^\circ))/(34)=(sin(72.02605745^\circ))/(c)\\\\c*sin(72^\circ)=34sin(72.02605745^\circ)\\\\c=(34sin(72.02605745^\circ))/(sin(72^\circ))\\ \\c=34.00502065\approx34

User Morton
by
2.9k points
30 votes
30 votes

Answer:

Given: A = 72°, a = 34, b = 21

Calculated: B = 35.97°, C = 72.03°, c = 34.00

Explanation:


(\sin A)/(a) = (\sin B)/(b)


(\sin 72^\circ)/(34) = (\sin B)/(21)


\sin B = (21\sin 72^\circ)/(34)


\sin B = 0.5874


B = \sin^(-1) 0.5874


B = 35.97^\circ

C = 180° - 72° - 35.97°

C = 72.03°


(\sin A)/(a) = (\sin C)/(c)


(\sin 72^\circ)/(34) = (\sin 72.03^\circ)/(c)


c = (\sin 72.03^\circ * 34)/(\sin 72^\circ)


c = 34.00

Given: A = 72°, a = 34, b = 21

Calculated: B = 35.97°, C = 72.03°, c = 34.00

User James Jacques
by
3.2k points