207k views
17 votes
Use the Law of Sines to solve (if possible) the triangle. If two solutions exist, find both. Round your answers to two decimal places. (If not possible, enter IMPOSSIBLE.) A = 72°, a = 34, b = 21

2 Answers

7 votes

Answer:


B\approx35.97^\circ\\C\approx72.03^\circ\\c\approx34

Explanation:

Law of Sines


(sinA)/(a)=(sinB)/(b)=(sinC)/(c)

Given information


A=72^\circ\\a=34\\b=21

Check if solutions exist

As
A=72^\circ < 90^\circ and that
a > b\rightarrow 34 > 21, then there exists only one possible triangle by the Ambiguous Case

Solve the triangle


(sin(72^\circ))/(34)=(sin(B))/(21)\\ \\ 21sin(72^\circ)=34sin(B)\\\\(21sin(72^\circ))/(34)=sin(B)\\ \\B=sin^(-1)((21sin(72^\circ))/(34))\\ \\B=35.97394255^\circ\approx35.97^\circ


A+B+C=180^\circ\\\\72^\circ+35.97394255^\circ+C=180^\circ\\\\107.97394255^\circ+C=180^\circ\\\\C=72.02605745^\circ\approx72.03^\circ


(sin(72^\circ))/(34)=(sin(72.02605745^\circ))/(c)\\\\c*sin(72^\circ)=34sin(72.02605745^\circ)\\\\c=(34sin(72.02605745^\circ))/(sin(72^\circ))\\ \\c=34.00502065\approx34

User Vishal Rajole
by
4.8k points
11 votes

Answer:

Given: A = 72°, a = 34, b = 21

Calculated: B = 35.97°, C = 72.03°, c = 34.00

Explanation:


(\sin A)/(a) = (\sin B)/(b)


(\sin 72^\circ)/(34) = (\sin B)/(21)


\sin B = (21\sin 72^\circ)/(34)


\sin B = 0.5874


B = \sin^(-1) 0.5874


B = 35.97^\circ

C = 180° - 72° - 35.97°

C = 72.03°


(\sin A)/(a) = (\sin C)/(c)


(\sin 72^\circ)/(34) = (\sin 72.03^\circ)/(c)


c = (\sin 72.03^\circ * 34)/(\sin 72^\circ)


c = 34.00

Given: A = 72°, a = 34, b = 21

Calculated: B = 35.97°, C = 72.03°, c = 34.00

User Gautam Sharma
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.