Answer:
![x^(3)/(5) = (x^3 )^(1)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/vrhx51eo8s5g5xd6mgu75rdokeq8qiovcd.png)
![x^(3)/(5) = \sqrt[5]{x^3}](https://img.qammunity.org/2022/formulas/mathematics/college/85khorkw84o4louggmvxgnevxacvqww2ac.png)
![x^(3)/(5) = (\sqrt[5]{x})^3](https://img.qammunity.org/2022/formulas/mathematics/college/y1rv02ew4fbaehw54k4xb6t84pn83zc1tz.png)
Explanation:
Given
![x^(3)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/rlqhgtchnsm7xi1vewgo3xg595luqrns0j.png)
Required
The equivalent expressions
We have:
![x^(3)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/rlqhgtchnsm7xi1vewgo3xg595luqrns0j.png)
Expand the exponent
![x^(3)/(5) = x^{ 3 * (1)/(5)}](https://img.qammunity.org/2022/formulas/mathematics/college/64lshyy15y2bb1oisedzi3y08zb7t3dy6t.png)
So, we have:
----- this is equivalent
Express 1/5 as roots (law of indices)
------ this is equivalent
The above can be rewritten as:
------ this is equivalent