218k views
0 votes
a special window in the shape of a rectangle with semicircles at each end is to be constructed so that the outside perimeter is 100 feet. find the dimensions of the rectangle tha tmaximizes the total area of the window

User Pomber
by
5.5k points

1 Answer

7 votes

Answer:

The dimensions of the rectangle are length 25 feet and width 15.92 feet

Explanation:

Let L be the length of the rectangle and w be the width.

The area of the rectangular part of the shape is Lw while the area of the two semi-circular ends which have a diameter which equals the width of the rectangle is 2 × πw²/8 = πw²/4. The area of each semi-circle is πw²/4 ÷ 2 = πw²/8

So, the area of the shape A = Lw + πw²/4.

The perimeter of the shape, P equals the length of the semi-circular sides plus twice its length. The length of a semi-circular side is πw/2. So, both sides is 2 × πw/2 = πw

P = πw + 2L

Since the perimeter, P = 100 feet, we have

πw + 2L = 100

From this L = (100 - πw)/2

Substituting L into A, we have

A = Lw + πw²/4.

A = [(100 - πw)/2]w + πw²/4.

A = 50w - πw²/2 + πw²/4.

A = 50w - πw²/2

Now differentiating A with respect to w and equating it to zero to find the value of w which maximizes A.

So

dA/dw = d[50w - πw²/2]/dw

dA/dw = 50 - πw

50 - πw = 0

πw = 50

w = 50/π = 15.92 feet

differentiating A twice to get d²A/dw² = - π indicating that w = 50/π is a value at which A is maximum since d²A/dw² < 0.

So, substituting w = 50/π into L, we have

L = (100 - πw)/2

L = 50 - π(50/π)/2

L = 50 - 50/2

L = 50 - 25

L = 25 feet

So, the dimensions of the rectangle are length 25 feet and width 15.92 feet

User VaclavDedik
by
5.0k points