Answer:
No, it doesn't indicate that the insurance claims of single people under the age of 25 is higher than the national percent reported by the large insurance company
Explanation:
Let's first state the hypotheses.
Null hypothesis; H0: p = 0.68
Alternative hypothesis; Ha: p > 0.68
A random sample of 53 claims showed that 41 were made by single people under the age of 25.
Thus; p^ = 41/53 = 0.7736
Let's find the test statistic from the formula;
z = (p^ - p_o)/√(p_o(1 - p_o)/n)
z = (0.7736 - 0.68)/√(0.68(1 - 0.68)/41)
z = 0.0936/0.07285
z = 1.28
From online p-value from z-score calculator, using z = 1.28, one tail hypothesis and significance level of 0.05,we have;
P(z > 1.28) = 0.100273
The p-value gotten is greater than the significance value and so we fail to reject the null hypothesis and conclude that there is insufficient evidence to support the claim.