Answer:
A sample of 1699 would be required.
Explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 1.96.
Now, find the margin of error M as such
In which
is the standard deviation of the population and n is the size of the sample.
Standard deviation is known to be $8.2.
This means that

How large of a sample would be required in order to estimate the mean per capita income at the 95% level of confidence with an error of at most $0.39?
This is n for which M = 0.39. So






Rounding up:
A sample of 1699 would be required.