Answer:
![2x^(2) - 3x - 8](https://img.qammunity.org/2022/formulas/mathematics/high-school/lqic5ouhdtv0zl2afbe3otjrahq3xdxlnq.png)
Explanation:
Step 1: Define what (f-g)(x) means
(f-g)(x) means that we have two different functions, f(x) and g(x). (f-g)(x) is a shorter way of writing f(x) - g(x). Therefore you just plug in the equations and combine like terms.
Step 2: Find (f-g)(x)
![f(x) = 2x^(2) - 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/6s56312byl2s764qnl883xj7jpu603gf97.png)
![g(x) = 3x + 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/8fajdx6hsx48rf5cljew4i46kt6pp2yt5k.png)
![(f-g)(x) = 2x^(2) - 5 - (3x + 3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3pq89ni2as9izwk6u39puc5gmdv7v91r16.png)
![(f-g)(x) = 2x^(2) - 5 - 3x - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/tiqpitpr0mpceoowkwy2qw7fhxteuhnnq0.png)
![(f-g)(x) = 2x^(2) - 3x - 8](https://img.qammunity.org/2022/formulas/mathematics/high-school/y4bpwkitwx6waw88dupptwttth7ckzzs13.png)
Answer:
![2x^(2) - 3x - 8](https://img.qammunity.org/2022/formulas/mathematics/high-school/lqic5ouhdtv0zl2afbe3otjrahq3xdxlnq.png)