Solution :
Given information :
A sample of n = 10 adults
The mean failure was 24 and the standard deviation was 3.2
a). The formula to calculate the 95% confidence interval is given by :
![$\overline x \pm t_(\alpha/2,-1) * (s)/(\sqrt n)$](https://img.qammunity.org/2022/formulas/mathematics/college/djrtomt0qwceq7pfrx9dqhnr02bin5d9yk.png)
Here,
![$t_(\alpha/2,n-1) = t_(0.05/2,10-1)$](https://img.qammunity.org/2022/formulas/mathematics/college/10850dfc0qh6lr7cqniahvdku79qfe5feg.png)
= 2.145
Substitute the values
![$24 \pm 2.145 * \frac{3.2}{\sqrt {10}}$](https://img.qammunity.org/2022/formulas/mathematics/college/970eiciyp8rgto9qa5xgpyxba9lalhson7.png)
(26.17, 21.83)
When the
is repeated from the
infinite number of
, and the
are constructed, then
of them contains the
, μ in between
![(26.17, 21.83)](https://img.qammunity.org/2022/formulas/mathematics/college/j62j79i8sccn8zh7q28fjnz9qylgjfm34u.png)
b). The formula to calculate 95% prediction interval is given by :
![$\overline x \pm t_(\alpha/2,-1) * s \sqrt{1+(1)/(n)}$](https://img.qammunity.org/2022/formulas/mathematics/college/d0lh10dm9elowdrde2kvprd4hlf3kdu0f1.png)
![$24 \pm 2.145 * 3.2 \sqrt{1+(1)/(10)}$](https://img.qammunity.org/2022/formulas/mathematics/college/of65saiy95xbeo0s0twq54te6a2mb2uoig.png)
(31.13, 16.87)