18.3k views
5 votes
What else would need to be congruent to show that ABC= A DEF by the

AAS theorem?
B
E
Given:
ZA ZD
AB DE
A
F
A. AC = DF
B. ZCE ZF
C. BC = BC
D. BEZE

User Ishtar
by
5.9k points

1 Answer

4 votes

Answer:


\angle C \cong \angle F

Explanation:

Given


\angle A \cong \angle D


AB \cong DE

See attachment

Required

What proves
\triangle ABC \cong \triangle DE F by AAS

We have:


\angle A \cong \angle D --- Angle


AB \cong DE --- Side

We need to prove that one more angle are congruent


\angle B \cong \angle E

The above angles are congruent; however, it will prove
\triangle ABC \cong \triangle DE F by ASA

So, we make use of:


\angle C \cong \angle F because it completes the proof by AAS

What else would need to be congruent to show that ABC= A DEF by the AAS theorem? B-example-1
User Hamms
by
5.3k points