115k views
4 votes
Number

5. Thesum of a two-digit number a
(CBSE 2002]
Find the numbers.
If the two digits differ by 2, find the number. I
6. The sum of two numbers is 1000 and the difference between their squares is 256000.
7. The sum of a two digit number and the number obtained by reversing the order of its
digits is 99. If the digits differ by 3, find the number.
8. A two-digit number is 4 times the sum of its digits. If 18 is added to the number, the digits
are reversed. Find the number.
(CBSE 2001C]
[CBSE 2001C]
9. A two-digit number is 3 more than 4 times the sum of its digits. If 18 is added to the
(CBSE 2001C]
number, the digits are reversed. Find the number.
10. A two-digit number is 4 more than 6 times the sum of its digits. If 18 is subtracted from
the number, the digits are reversed. Find the number.
11. A two-digit number is 4 times the sum of its digits and twice the product of the digits.
[CBSE 2005]
Find the number.
[CBSE 2005]
12. A two-digit number is such that the product of its digits is 20. If 9 is added to the number,
the digits interchange their places. Find the number.
13. The difference between two numbers is 26 and one number is three times the other. Find
them.
14. The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the​

User Europeuser
by
4.8k points

1 Answer

3 votes

Answer:

Let the numbers are x and y

According to the question

⇒x+y=1000.....eq1⇒x 2 −y 2

=256000∵x 2 −y 2

=(x+y)(x−y)

⇒1000∗(x−y)=256000

⇒x−y=256.....eq2

Adding eq1 and eq2

⇒2x=1256⇒x=628

Put the value of x in eq1

⇒628+y=1000⇒y=372

The numbers are 628 and 372

Hi I'm From PHILIPPINES

I'm here to help USA users like you

User James Yang
by
3.8k points