124k views
14 votes
Find the value of x, y, and z in the rhombus below.

Find the value of x, y, and z in the rhombus below.-example-1
User Ryan DuVal
by
3.2k points

1 Answer

2 votes

Answer:

x = 20

y = -7

z = -11

Explanation:

Sum of interior angles of a rhombus = 360°

The opposite angles of a rhombus are equal to each other.

The adjacent angles are supplementary (add up to 180°)

Therefore,

66 + (6x - 6) = 180

⇒ 66 + 6x - 6 = 180

⇒ 6x = 180 - 66 + 6

⇒ 6x = 120

⇒ x = 120 ÷ 6

⇒ x = 20

66 + (-10z + 4) = 180

⇒ 66 - 10z + 4 = 180

⇒ -10z= 180 - 66 - 4

⇒ -10z = 110

⇒ z = 110 ÷ -10

⇒ z = -11

(6x - 6) + (-10y - 4) = 180

⇒ 6x - 6 - 10y - 4 = 180

⇒ 120 - 6 - 10y - 4 = 180

⇒ -10y = 180 - 120 + 6 + 4

⇒ -10y = 70

⇒ y = 70 ÷ -10

⇒ y = -7

User Dave Winer
by
3.6k points