448 views
12 votes
A) For AQMNO use the Triangle Proportionality Theorem to solve for x. OMN

A) For AQMNO use the Triangle Proportionality Theorem to solve for x. OMN-example-1

2 Answers

3 votes

Answer:

  • x = 12 units
  • perimeter = 113 units

Given for big triangle:

  • MN = 36
  • MO = 3x + 9 + 15 = 3x + 24

Given for small triangle:

  • side 1 : 36 - 9 = 27
  • side 2 : 3x + 9

setting up proportionality:


\hookrightarrow \sf (36)/(3x+24) = (27)/(3x+9)


\hookrightarrow \sf 36(3x+9) = 27(3x+24)


\hookrightarrow \sf 108x+324 = 81x+648


\hookrightarrow \sf 108x-81x = 648-324


\hookrightarrow \sf 27x = 324


\hookrightarrow \sf x = 12

Perimeter of the triangle:

36 + 17 + 15 + 3x + 9

36 + 17 + 15 + 3(12) + 9

113 units

User Dimlucas
by
5.2k points
4 votes

Answer:

x = 12

perimeter = 113 units

Explanation:

Triangle Proportionality Theorem states that if a line parallel to one side of the triangle intersects the other two sides, then it divides the sides into proportional corresponding segments.


\implies 3x+9 : 15 = (36-9) : 9


\implies 3x+9 : 15 = 27 : 9


\implies (3x+9)/(15)= (27)/(9)


\implies 3x+9 = 45


\implies 3x = 36


\implies x = 12

Perimeter =
3x+9 + 15 + 17 + 36

Substituting
x = 12:

⇒ perimeter = 3(12) + 9 + 15 + 17 + 36

= 113

User Haneef
by
4.0k points