Answer:
x = 12
perimeter = 113 units
Explanation:
Triangle Proportionality Theorem states that if a line parallel to one side of the triangle intersects the other two sides, then it divides the sides into proportional corresponding segments.
![\implies 3x+9 : 15 = (36-9) : 9](https://img.qammunity.org/2023/formulas/mathematics/high-school/x9cxt8x8itug9ryginurzmwleuptfbc6uz.png)
![\implies 3x+9 : 15 = 27 : 9](https://img.qammunity.org/2023/formulas/mathematics/high-school/cz9rue1sd1ytwa9tc228r8u1fl8xznfrkr.png)
![\implies (3x+9)/(15)= (27)/(9)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wfqe0ieee9380x9cx3v21mqo8rr3de07hg.png)
![\implies 3x+9 = 45](https://img.qammunity.org/2023/formulas/mathematics/high-school/nt20ashi8fulcz214y2f8dxq3lzq0hspu9.png)
![\implies 3x = 36](https://img.qammunity.org/2023/formulas/mathematics/high-school/8pc6tftsuaxj0hit2kcuovy55fq34prary.png)
![\implies x = 12](https://img.qammunity.org/2023/formulas/mathematics/high-school/t7xu4kmdmwplgi0knvmb9v81dryl1lng1e.png)
Perimeter =
![3x+9 + 15 + 17 + 36](https://img.qammunity.org/2023/formulas/mathematics/high-school/4qwk74m7u1fvzbm5rgeq0xah98isz313k0.png)
Substituting
:
⇒ perimeter = 3(12) + 9 + 15 + 17 + 36
= 113