154k views
0 votes
Given the function R(x)=x+3/x−5, find the values of x that make the function greater than or equal to zero. Write the solution in interval notation.

2 Answers

3 votes

Answer:

Explanation:


R(x)=(x+3)/(x-5) \geq 0\\R(x)=0,gives~x+3=0,x=-3\\R(x)>0 ,if~both~numerator ~and~denominator~are~of~same~sign.\\let~x+3>0,x>-3\\and~x-5>0,x>5\\combining \\x>5\\\\again~let~x+3<0,x<-3\\x-5<0,x<5\\combining\\x<-3\\Hence~R(x)\geq 0\\if ~x \in ~[- \infty,-3]U(5,\infty)

User Gabtub
by
4.0k points
4 votes
It’s 66 off my and I don’t have to get to the hood lol lol I don’t know what to do it
User Ishmal Ijaz
by
3.4k points