206k views
5 votes
Is (3,2) a solution to the system y -x =1 and -3x-2y=5

Yes, because (3, 2) is a solution to both equations.

No, because (3, 2) is a solution to only one equation.

Yes, because (3, 2) solution to one equation.

No, because (3, 2) is a solution to neither equation.

2 Answers

7 votes
Answer:

No, because (3, 2) is a solution to neither equation.

Explanation:

Here’s how to determine if a solution fits into a system:

y -x = 1

Substitute (3, 2) for x and y values

2 - 3 = 1

Solve

-1 = 1

So the answer is no (3, 2) cannot be a system to y - x = 1

Now let’s try the other system: -3x - 2y = 5

-3x - 2y = 5

Substitute (3, 2) for x and y values

-3(3) - 2(2) = 5

-9 - 4 = 5

-13 = 5

Therefore (3, 2) is a solution to neither equation

User Jonovono
by
2.8k points
3 votes

Explanation:

Given point :-

  • (3,2)

Equations :-

  • y - x = 1
  • -3x -2y = 5

=> y - x = 1

=> y = x + 1

=> -3x -2x -2 = 5

=> -5x = 7

=> x = -7/5

Therefore the point (3,2) is not a solution .

No, because (3, 2) is a solution to neither equation.

User Calos
by
4.1k points