Answer:
![Domain = (-\infty,\infty)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mhb15ko8381tcfggpwwwgt5av9c330t7s8.png)
![Range = (0,1)\\](https://img.qammunity.org/2022/formulas/mathematics/college/vvsbo8u3k5fubletx83if8tssatwk45mdc.png)
Explanation:
Given
![f(x) = \sin|x|](https://img.qammunity.org/2022/formulas/mathematics/college/6in7prfmtljzghs583it0qkwrt948xr8f9.png)
Solving (a): The domain
There is no restriction on the given function because it is not a root function and doesn't have a x denominated fraction
Hence, the domain is:
![(-\infty,\infty)](https://img.qammunity.org/2022/formulas/mathematics/college/yzcm50etn5eu8ce5f6he84mhqj4daf50cp.png)
Solving (b): The range
The minimum of a sine function is 0
The maximum of a sine function is 1
So, the range is:
![(0,1)](https://img.qammunity.org/2022/formulas/mathematics/college/klxeezr2e8wh115cv7q3kfbqgb14duuky6.png)