Step-by-step explanation:
The density of earth
is given by
![\rho_E = (M_E)/(\left((4\pi)/(3)R_E^3\right))](https://img.qammunity.org/2022/formulas/physics/college/m2mma4kn44kg8fkd2q11sb57pkemnp4yo5.png)
and in terms of this density, we can write the acceleration due to gravity on earth as
![g_E =G(M_E)/(R_E^2) = (4\pi G)/(3)\rho_ER_E](https://img.qammunity.org/2022/formulas/physics/college/8gxft595zv2t1res0yn4k7nu2kalkrybvk.png)
Similarly, the acceleration due to gravity
on this new planet is given by
![g_P = G(M_P)/(R_P^2) = G((4\pi)/(3)R_p^3\rho_P)/(R_P^2)](https://img.qammunity.org/2022/formulas/physics/college/thcr834yd2lpyukzybzfoacqjkkwz1m2wp.png)
![\:\:\:\:\:= (4\pi G)/(3)\rho_PR_P](https://img.qammunity.org/2022/formulas/physics/college/um3twby8iop3owpdshzcxtrydcjgzn91yy.png)
We know that this planet has the same density as earth and has a radius 2 times as large. We can then rewrite
as
![g_P = (4\pi G)/(3)\rho_E(2R_E)](https://img.qammunity.org/2022/formulas/physics/college/gdl3bso7hskulz2us7ssv70gp3kc011vnv.png)
![\:\:\:\:\:= 2\left((4\pi G)/(3)\rho_ER_E\right) = 2g_E](https://img.qammunity.org/2022/formulas/physics/college/filrt02slobwqi6if3cb522m1d5lfqm3oq.png)
![\:\:\:\:\:= 2(9.8\:\text{m/s}^2) = 19.6\:\text{m/s}^2](https://img.qammunity.org/2022/formulas/physics/college/lz4eo8oyf4dd2rv4zjimrjnftgoxf4ikpi.png)