78.8k views
3 votes
The input sin(20) is sampled at 20 ms intervals by using impulse train sampling: i. Construct the input and sampled signal spectra.

1 Answer

6 votes

Solution :

Let
$x(t) = (\sin (20 \pi t))/(\pi t)$


$T_s = 20$ ms, so
$f_s=(1)/(T_s)


$=(1)/(20)$

= 0.05 kHz


$f_s=50 $ Hz , ws =
$2 \pi f_s = 100 \pi$ rad/s

We know that,

FT →
$(\sin (20 \pi \omega))/(\pi \omega)$

The sampled signal is :


$XS(\omega) = (1)/(T_s) \sum_(k=- \infty)^(\infty)X (\omega-k\omega S)

So,
$XS(\omega) = (1)/(20 * 10^(-3)) \sum_(k=- \infty)^(\infty)X (\omega-100 k \pi)


$XS(\omega) = 50 \sum_(k=- \infty)^(\infty)X (\omega-100 k \pi)

The input sin(20) is sampled at 20 ms intervals by using impulse train sampling: i-example-1
User Darleen
by
5.9k points