185k views
4 votes
Help its addition and subtraction of Algebraic fractions of different
denominator

Help its addition and subtraction of Algebraic fractions of different denominator-example-1

1 Answer

5 votes

Answer:


49. \ (x^2)/(x^2 +2 \cdot x - 8) - (x - 4)/(x + 4)

The above reaction can be rewritten as follows;


(x^2)/(x^2 +2 \cdot x - 8) - (x - 4)/(x + 4) =(x^2)/((x + 4) \cdot (x - 2)) - (x - 4)/(x + 4) = (x^2 + (x - 2) \cdot (x - 4))/((x + 4) \cdot (x - 2))

Which gives;


(x^2)/(x^2 +2 \cdot x - 8) - (x - 4)/(x + 4) = (x^2 -(x^2 -6 \cdot x + 8) )/((x + 4) \cdot (x - 2)) = (6 \cdot x - 8 )/((x + 4) \cdot (x - 2))


50. \ (x - 3)/(x^2 +10 \cdot x + 25) + (x - 3)/(x + 5)


(x - 3)/(x^2 +10 \cdot x + 25) + (x - 3)/(x + 5) = (x - 3)/((x + 5) \cdot (x + 5)) + (x - 3)/(x + 5) = (x - 3 + (x - 3) \cdot (x + 5))/((x + 5) \cdot (x + 5))


(x - 3 + (x - 3) \cdot (x + 5))/((x + 5) \cdot (x + 5)) = (x - 3 + x^2 + 2\cdot x - 15)/((x + 5) \cdot (x + 5)) = ( x^2 + 3 \cdot x - 18)/((x + 5) \cdot (x + 5))


53. \ (5)/(a^2 +9 \cdot a + 8) - (3)/(a^2 -6 \cdot a - 16)


(5)/(a^2 +9 \cdot a + 8) - (3)/(a^2 -6 \cdot a - 16) = (5)/((a + 1) \cdot (a + 8)) - (3)/((a - 8) \cdot (a + 2) )


(5)/((a + 1) \cdot (a + 8)) - (3)/((a - 8) \cdot (a + 2) ) = (5 \cdot (a - 8) \cdot (a + 2) - 3\cdot (a + 1) \cdot (a + 8))/((a + 1) \cdot (a + 8) \cdot (a - 8) \cdot (a + 2))


(5 \cdot (a - 8) \cdot (a + 2) - 3\cdot (a + 1) \cdot (a + 8))/((a + 1) \cdot (a + 8) \cdot (a - 8) \cdot (a + 2)) = (2 \cdot a^2 -57 \cdot a -104)/(a^4+3 \cdot a^3-62 \cdot a^2 -192 \cdot a - 1)


(5)/(a^2 +9 \cdot a + 8) - (3)/(a^2 -6 \cdot a - 16) = (2 \cdot a^2 -57 \cdot a -104)/(a^4+3 \cdot a^3-62 \cdot a^2 -192 \cdot a - 1)


55. \ (2)/(x^2 +6 \cdot x + 9) + (3)/(x^2 + x - 6)


(2)/(x^2 +6 \cdot x + 9) + (3)/(x^2 + x - 6) = (2)/((x + 3) \cdot (x + 3)) + (3)/((x+3) \cdot(x - 2))


(2)/((x + 3) \cdot (x + 3)) + (3)/((x+3) \cdot(x - 2)) = (2 \cdot(x - 2) + 3\cdot (x + 3) )/((x + 3) \cdot (x + 3) \cdot(x - 2))


(2 \cdot(x - 2) + 3\cdot (x + 3) )/((x + 3) \cdot (x + 3) \cdot(x - 2)) = (2 \cdot x - 4 + 3\cdot x + 9 )/((x + 3) \cdot (x + 3) \cdot(x - 2)) = (5 \cdot x + 5 )/((x + 3) \cdot (x + 3) \cdot(x - 2))
(5 \cdot x + 5 )/((x + 3) \cdot (x + 3) \cdot(x - 2)) = (5 \cdot x + 5 )/(x ^3 + 4 \cdot x^2-3 \cdot x - 18)


57. \ (x)/(2 \cdot x^2 +7 \cdot x + 3) - (3)/(3 \cdot x^2 + 7 \cdot x - 6)


(x)/(2 \cdot x^2 +7 \cdot x + 3) - (3)/(3 \cdot x^2 + 7 \cdot x - 6) =(x)/((2 \cdot x + 1) \cdot (x + 3)) - (3)/((3\cdot x-2) \cdot (x + 3))


(x)/((2 \cdot x + 1) \cdot (x + 3)) - (3)/((3\cdot x-2) \cdot (x + 3)) = (x \cdot (3 \cdot x - 2) - 3 \cdot (2 \cdot x + 1))/((2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2))


(x \cdot (3 \cdot x - 2) - 3 \cdot (2 \cdot x + 1))/((2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)) = ( 3 \cdot x^2 - 8\cdot x - 3 )/((2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2))


( 3 \cdot x^2 - 8\cdot x - 3 )/((2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)) = ( (x -3) \cdot (3 \cdot x + 1) )/((2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2))


( (x -3) \cdot (3 \cdot x + 1) )/((2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)) = (3 \cdot x^2 - 8 \cdot x -3 )/(6 \cdot x^3+ 17 \cdot x^2 + 5 \cdot x-6)


59. \ (x)/(4 \cdot x^2 +11 \cdot x + 6) - (2)/(8 \cdot x^2 + 2 \cdot x - 3)

Using a graphing calculator, we have;


(x)/(4 \cdot x^2 +11 \cdot x + 6) - (2)/(8 \cdot x^2 + 2 \cdot x - 3) = (2 \cdot x^2 - 3 \cdot x - 4)/(8 \cdot x^3+18 \cdot x^2+x - 6)


61. \ (3 \cdot w+ 12)/(w^2 + w -12) - (2)/(w - 3)


(3 \cdot w+ 12)/(w^2 + w -12) - (2)/(w - 3) = (3 \cdot (w+ 4))/((w + 4) \cdot (w - 3)) - (2)/(w - 3) = (3 )/( (w - 3)) - (2)/(w - 3)


(3 )/( (w - 3)) - (2)/(w - 3) = (1 )/( (w - 3))


61. \ (3 \cdot r)/(2 \cdot r^2 + 10 \cdot r +12) + (3)/(r - 2)

With the aid of a graphing calculator, we have;


(3 \cdot r)/(2 \cdot r^2 + 10 \cdot r +12) + (3)/(r - 2) = (3 \cdot r)/(2 \cdot (r+2) \cdot (r + 3)) + (3)/(r - 2)


(3 \cdot r)/(2 \cdot (r+2) \cdot (r + 3)) + (3)/(r - 2) = (3 \cdot r \cdot (r - 2) + 3 \cdot 2 \cdot (r+2) \cdot (r + 3))/(2 \cdot (r+2) \cdot (r + 3)\cdot (r - 2) )


(3 \cdot r \cdot (r - 2) + 3 \cdot 2 \cdot (r+2) \cdot (r + 3))/(2 \cdot (r+2) \cdot (r + 3)\cdot (r - 2) ) = (9 \cdot r^2 + 24 \cdot r + 36)/(2 \cdot r^3+6\cdot r^2 - 8 \cdot r - 24)

Explanation:

User Jsaji
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories