Answer:
![\pm 9in^2](https://img.qammunity.org/2022/formulas/mathematics/college/aqt1c4bhlhf86d0uluo1gq4iufut7wsf9i.png)
Explanation:
We are given that
Radius of end of a log, r= 9 in
Error,
in
We have to find the error in computing the area of the end of the log by using differential.
Area of end of the log, A=
![pi r^2](https://img.qammunity.org/2022/formulas/mathematics/college/2iclxlvptvdtw7jh2wi3o6y8hkvz9cor05.png)
![(dA)/(dr)=2\pi r](https://img.qammunity.org/2022/formulas/mathematics/college/jmkdsqo9fcuz0cady3ynrxbmwintnqwtsq.png)
![(dA)/(dr)=2\pi (9)=18\pi in^2](https://img.qammunity.org/2022/formulas/mathematics/college/2vpafsygmtkjpg0a2y1f316rb4rwxfl6r3.png)
Now,
Approximate error in area
![dA=(dA)/(dr)(\Delta r)](https://img.qammunity.org/2022/formulas/mathematics/college/j4zd9zcd8rngdmoczcnjhjfmhxiq27pnbt.png)
Using the values
![dA=18\pi (\pm 1/2)](https://img.qammunity.org/2022/formulas/mathematics/college/7ca5aw5btf9ja5aucihtky69ficvbytnac.png)
![\Delta A\approx dA=\pm 9in^2](https://img.qammunity.org/2022/formulas/mathematics/college/t0suifmcw4x3hkoggv0qha7exymtu7ld9z.png)
Hence, the possible propagated error in computing the area of the end of the log
![=\pm 9in^2](https://img.qammunity.org/2022/formulas/mathematics/college/4l488yi73m2kgaa54rlh5s9t5p2hvrg4mq.png)