7,282 views
6 votes
6 votes
Please help, with an explanation !!

Please help, with an explanation !!-example-1
User Dono
by
2.5k points

2 Answers

16 votes
16 votes

Ratio remains same

  • AX:XC=DX:XB=3:2

So

  • DX=12cm
  • XB=8cm
  • AX=7.2cm
  • XC=4.8cm

Now

<ABX be P


\\ \rm\Rrightarrow tanP=(AX)/(BX)


\\ \rm\Rrightarrow tanP=(7.2)/(8)


\\ \rm\Rrightarrow tanP=(9)/(10)


\\ \rm\Rrightarrow P=41.98°

And

  • <XBC be N


\\ \rm\Rrightarrow tanN=(XC)/(BX)


\\ \rm\Rrightarrow tanN=(4.8)/(8)=(3)/(5)


\\ \rm\Rrightarrow tanN=0.6


\\ \rm\Rrightarrow N=30.96

Now

  • <ABC=30.96+41.98=72.94°
Please help, with an explanation !!-example-1
User Angelin Nadar
by
3.3k points
12 votes
12 votes

Answer:

∠ABC = 73.74° (nearest hundredth)

Explanation:

Properties of a kite:

  • A kite has two pairs of equal sides.
  • It has one pair of equal angles.
  • The diagonals bisect at right angles

If X is the point of intersection, the length of BD = 20 cm
and DX : XB = 3 : 2, then

⇒ DX = 3/5 of 20 and XB = 2/5 of 20

⇒ DX = 12 cm and XB = 8 cm

(see attached diagram)

∠ABC =∠XBC + ∠XBA

As ∠XBC ≅ ∠XBA then ∠ABC = 2∠XBC

To find ∠XBC use tan ratio:


\mathsf{tan(\theta)=(opposite \ side)/(adjacent \ side)}

Given in ΔXBC

  • angle = ∠XBC
  • side opposite the angle = 6 cm
  • side adjacent the angle = 8 cm


\mathsf{tan(XBC)=(6)/(8)=\frac34}


\mathsf{angle(XBC)=tan^(-1)\left(\frac34\right)}

∠XBC = 36.86989765...°

Therefore, ∠ABC = 2 x 36.86989765...°

= 73.73979529...°

= 73.74° (nearest hundredth)

Please help, with an explanation !!-example-1
User Petra
by
3.1k points