169k views
3 votes
Prove the following: 1 by sin 2A + cos4a by sin 4A equals to COT A minus Cosec4A


2 Answers

5 votes

Answer:

nice thanks for answer

User Gooid
by
4.4k points
4 votes

Answer:

cotA-cosec4A

Explanation:

LHS=1/sin2A + cos4A/sin4A

=1/sin2A +cos4A/2sin2.Acos2A

=1/sin2A (1+cos4A/2cos2A)

=1/sin2A(2cos2A+cos^2A-sin^3A)/2Cos2A

=1/sin2A(2cos2A+cos^2Ac-(1-cos^2A)/2cos2A

=1/sin2A(2cosA(1+cos2A)-1)/2cos2A

=1/sin2A(1+cos2A-1/2cos2A)

=1+cos2A/sin2A-1/sin2A.cos2A

=1+2cos^A-1/2sinA.cosA-1/sin4A

=2cos^A/2sinA.cosA-1/sin4A

=cosA/sinA-1/sin4A

=cotA-cosec4A

=LHS=RHS

User Alex Krotnyi
by
4.4k points