Given:
The expression is:
![\left((1)/(7)-4√(3)\right)^3+\left((1)/(7)+4√(3)\right)^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/60v9i7pnt9r1r3iav1d1nigyyfeqrtslsk.png)
To find:
The simplified form of the given expression.
Solution:
Formulae used:
![(a-b)^3=a^3-3a^2b+3ab^2-b^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/gpkqq279gy896e6w2s7mf6oamdmkug4bfr.png)
![(a-b)^3=a^3+3a^2b+3ab^2+b^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/n09doy0gfhvhq03nr3n1kb0v4yqofe5err.png)
Adding this formulae, we get
...(i)
We have,
![\left((1)/(7)-4√(3)\right)^3+\left((1)/(7)+4√(3)\right)^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/60v9i7pnt9r1r3iav1d1nigyyfeqrtslsk.png)
Using formula (i), the given expression can be written as:
![=2\left((1)/(7)\right)^3+6\left((1)/(7)\right)\left(4√(3)\right)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/vn7qb2rmtde4o6s9096awr9dgd21n2p92l.png)
![=2* (1)/(343)+6\left((1)/(7)\right)48](https://img.qammunity.org/2022/formulas/mathematics/high-school/r6bbkyqmyycfssfsseq0r2vbhixb3d75mv.png)
![=(2)/(343)+(288)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zhqw4f8z4elicgn2cpf0a0dcrcmp2nf3zw.png)
![=(2+14112)/(343)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5eowt2q0sf23qjzsozjld5c0a2iwwmp7g1.png)
![=(14114)/(343)](https://img.qammunity.org/2022/formulas/mathematics/high-school/t6x40r4mpsywrfrqzjmt5y56l3r0gyzog5.png)
Therefore, the simplified form of the given expression is
.