2.0k views
3 votes
(1 / 7 - 4√3)^3 + (1 / 7 + 4√3)^3

User Denny
by
3.3k points

1 Answer

4 votes

Given:

The expression is:


\left((1)/(7)-4√(3)\right)^3+\left((1)/(7)+4√(3)\right)^3

To find:

The simplified form of the given expression.

Solution:

Formulae used:


(a-b)^3=a^3-3a^2b+3ab^2-b^3


(a-b)^3=a^3+3a^2b+3ab^2+b^3

Adding this formulae, we get


(a-b)^3+(a+b)^3=2a^3+6ab^2 ...(i)

We have,


\left((1)/(7)-4√(3)\right)^3+\left((1)/(7)+4√(3)\right)^3

Using formula (i), the given expression can be written as:


=2\left((1)/(7)\right)^3+6\left((1)/(7)\right)\left(4√(3)\right)^2


=2* (1)/(343)+6\left((1)/(7)\right)48


=(2)/(343)+(288)/(7)


=(2+14112)/(343)


=(14114)/(343)

Therefore, the simplified form of the given expression is
(14114)/(343).

User Anton Sizikov
by
3.7k points