Answer:
A visit must be of at least 42.39 minutes to put a shopper in the longest 10 percent.
Explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 27.8 minutes and a standard deviation of 11.4 minutes.
This means that

How long must a visit be to put a shopper in the longest 10 percent?
The 100 - 10 = 90th percentile, which is X when Z has a p-value of 0.9, so X when Z = 1.28.


A visit must be of at least 42.39 minutes to put a shopper in the longest 10 percent.