Answer:
![(a)\ (dP)/(dt) = kP + r](https://img.qammunity.org/2022/formulas/mathematics/college/gz74jqj43m496frvlgubbzq922kfrbhu4w.png)
![(b)\ (dP)/(dt) = kP - r](https://img.qammunity.org/2022/formulas/mathematics/college/thtlo79284wl9w49i66eud5l2qnibde4jx.png)
Explanation:
Given
![(dP)/(dt) = kP](https://img.qammunity.org/2022/formulas/mathematics/college/r93c0savqbb1y9odvbz8jos3tnkgg2i1kf.png)
Solving (a): Differential equation for immigration where
![r > 0](https://img.qammunity.org/2022/formulas/mathematics/college/wngzgjvw95vayrg3de84kj3dxqhb74al1t.png)
We have:
![(dP)/(dt) = kP](https://img.qammunity.org/2022/formulas/mathematics/college/r93c0savqbb1y9odvbz8jos3tnkgg2i1kf.png)
Make dP the subject
![dP =kP \cdot dt](https://img.qammunity.org/2022/formulas/mathematics/college/x3i5slpi45m732y6mkqmbc4uwox38y9wp5.png)
From the question, we understand that:
. This means that
--- i.e. the population will increase with time
Divide both sides by dt
![(dP)/(dt) = kP + r](https://img.qammunity.org/2022/formulas/mathematics/college/ez1fv1na64eaiv3jskw5keohix0irxh5d5.png)
Solving (b): Differential equation for emigration where
![r > 0](https://img.qammunity.org/2022/formulas/mathematics/college/wngzgjvw95vayrg3de84kj3dxqhb74al1t.png)
We have:
![(dP)/(dt) = kP](https://img.qammunity.org/2022/formulas/mathematics/college/r93c0savqbb1y9odvbz8jos3tnkgg2i1kf.png)
Make dP the subject
![dP =kP \cdot dt](https://img.qammunity.org/2022/formulas/mathematics/college/x3i5slpi45m732y6mkqmbc4uwox38y9wp5.png)
From the question, we understand that:
. This means that
--- i.e. the population will decrease with time
Divide both sides by dt
![(dP)/(dt) = kP - r](https://img.qammunity.org/2022/formulas/mathematics/college/zzjmer85qgkiesdne3kdtqw3764co9jaq1.png)