39.1k views
1 vote
Suppose that the functions s and t are defined for all real numbers x as follows.

s (x)=x-2
t(x) = 4x+3
Write the expressions for (s +t)(x) and (s – t)(x) and evaluate (s.t)(1).

User Mezod
by
4.2k points

1 Answer

6 votes

Answer:


(s + t)(x)= 5x+1


(s - t)(x)= -3x-5


(s.t)(1) = -7

Explanation:

Given


s(x) = x - 2


t(x) = 4x + 3

Solving (a): (s + t)(x)

This is calculated as:


(s + t)(x)= s(x) + t(x)


(s + t)(x)= x-2 + 4x + 3

Collect like terms


(s + t)(x)= x+ 4x-2 + 3


(s + t)(x)= 5x+1

Solving (b): (s - t)(x)

This is calculated as:


(s - t)(x)= s(x) - t(x)


(s - t)(x)= x-2 - 4x - 3

Collect like terms


(s - t)(x)= x- 4x-2 - 3


(s - t)(x)= -3x-5

Solving (b): (s . t)(1)

First, we calculate (s.t)(x)

This is calculated as:


(s.t)(x) = s(x)* t(x)

So, we have:


(s.t)(x) = (x - 2) * (4x + 3)

Substitute 1 for x


(s.t)(1) = (1 - 2) * (4*1 + 3)


(s.t)(1) = - 1 * 7


(s.t)(1) = -7