Given:
The endpoints of the latus rectum at (-2, 3) and (-2, 15).
The directrix at x = 4.
To find:
The equation of the parabola.
Solution:
The equation of the parabola is:
...(1)
Where,
is directrix and
are the end point of the latus rectum.
The directrix at x = 4. So,
...(i)
The endpoints of the latus rectum at (-2, 3) and (-2, 15). So,
![(h+p,k-|2p|)=(-2,3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7gqkja69n59swpahe9g4151aej18kmojuu.png)
![(h+p,k+|2p|)=(-2,15)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7fbq1za0ce2hum4uj4tzketdwfz6vgiijk.png)
Now,
...(ii)
...(iii)
...(iv)
Adding (i) and (ii), we get
![2h=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/juiml4efa56lbfjj5dmfhkj0cqfideg3cj.png)
![h=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/u7hhu20f8lknt95t4fygwh6lgccammvuep.png)
Putting
in (i), we get
![1-p=4](https://img.qammunity.org/2022/formulas/mathematics/high-school/5t3jx3pxijk0gea4pcrplfs6uvibwt40qb.png)
![-p=4-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/u12z1m9deqzs6tsa329q7sshn0282w70tk.png)
![-p=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/qabk5wowauesp7vnjn9kj5d3y0d2svmr3t.png)
![p=-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/wdtajp6evpbgp61jzm6seiq8akl07tgy48.png)
Putting
in (iii), we get
Putting
in (1), we get
![(y-(9))^2=4(-3)(x-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5zkhm4hiud0fh4bm5446qjhxdpdotnzjfx.png)
![(y-9)^2=-12(x-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qrekvtblg0eoyz5rl92aqivci97j39hv7w.png)
Therefore, the required equation of the parabola is
.