84.1k views
5 votes
What is the value of a if va- vh is equals to 1



2 Answers

1 vote

Answer:


\displaystyle a = (1+vh)/(v)

Explanation:

we want to figure out a value of a for the following condition


\displaystyle va - vh = 1

to do so factor out v;


\displaystyle v (a - h )= 1

divide both sides by v which yields:


\displaystyle \frac{(a-h) \cancel{(v)}}{ \cancel{v}}= (1)/(v)

therefore,


\displaystyle a-h = { (1)/(v)}

now,add h to both sides:


\displaystyle a = (1)/(v)+h

further simplification if necessary:


\displaystyle a =\boxed{ (1+vh)/(v)}

User Darren Hall
by
3.4k points
3 votes

Given:-


  • \sf{va-vh=1 }

To find:-


  • \sf{ value~ of ~a }

Solution:-


  • \sf{ va-vh=1 }

factor out of v


  • \sf{v(a-h)=1 }

Dividing both sides by (v)


  • \sf{(v(a-h))/((v))=(1)/((v)) }

cancel out (v)


  • \sf{\frac{\cancel{v}(a-h)}{\cancel{(v)}}=(1)/((v)) }


  • \sf{ a-h=(1)/(v) }

add h in both sides


  • \sf{a-h+h=(1)/(v)+h }

cancelout h


  • \sf{a-\cancel{h}+\cancel{h}=(1)/(v)+h }


  • \sf{a=(1)/(v)+h }


  • \boxed{\sf{a=(1+vh)/(v) } }


\sf{ }
\sf{ }

Therefore:-

the value of a if va- vh is equals to 1 is
\bold{(1+vh)/(v) }

User Hba
by
3.7k points